

OPEN HYDROGEN INITIATIVE

Rosa Dominguez-Faus, Ph.D. Sr. Mgr. LCA at GTI Energy

S&P Global Commodity Insights

1r Congreso de Hidrógeno y Eficiencia Energética ANDI | NATURGAS | Cartagena, Colombia | 19-20 de octubre de 2023

Que es GTI Energy?

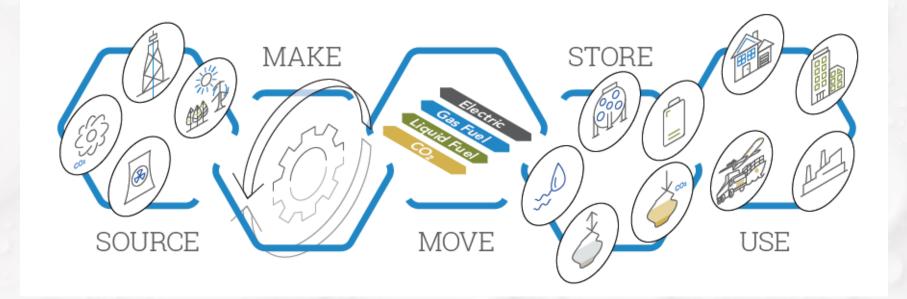
What is GTI Energy?

- Not-for-profit R&D organization in the liguids/gases space
- Mission driven for low carbon, low cost energy transition, leverage existing infrastructure and knowledge resources.
- 75 years legacy
- **GRI founded in 1976** in response to the Federal Power Commission (FPC) encouraging increased gas research and development (R&D).
- **IGT founded in 1941** to train graduate engineers, in affiliation with the Illinois Institute of Technology (IIT)
- GRI/IGT merge and become GTI in 2000
- Name changes to GTI Energy in 2022
- 400+ Employees
- Mostly Engineers and PhDs
- Recognized for rigor and technical expertise

Working with utilities to address critical challenges

A Highly Collaborative Organization

Leveraging expertise and funding to address common challenges and opportunities for utilities



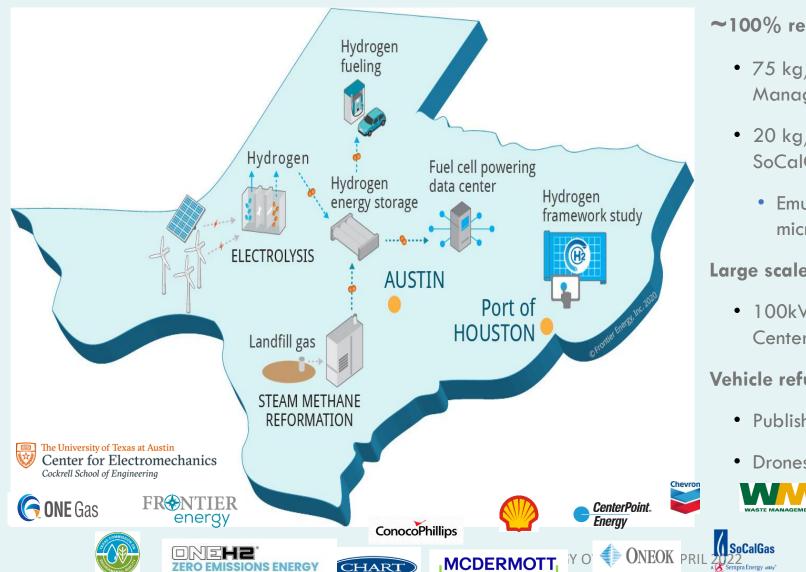
OPEN HYDROGEN INITIATIVE

Hydrogen Technology Center

Creating Low Cost, Low Carbon Energy Systems through Integrated Hydrogen Solutions

OPEN HYDROGEN INITIATIVE

Kristine Wiley VP Low Carbon Solutions


Hydrogen Hubs

SELECTED REGIONAL CLEAN HYDROGEN HUBS Heartland Pacific Northwest Hydrogen Hub Hydrogen Hub Heartland Hub (HH2H) PNW H2 Midwest Hydrogen Hub California Midwest Alliance for Clean Mid-Atlantic Hydrogen (MachH2) Hydrogen Hub Hydrogen Hub Alliance for Renewable Clean Appalachian Hydrogen Energy Systems Mid-Atlantic Clean Hydrogen Hub (MACH2) (ARCHES) Hydrogen Hub Appalachian Regional Clean Gulf Coast Hydrogen Hub (ARCH2) Hydrogen Hub HyVelocity H2Hub **Proposed H2 Facility** Selected H2Hubs

Contact: OHI@gti.energy

H2@Scale TX Demo

- \sim 100% renewable H₂ generation
 - 75 kg/day SMR: GTI, OneH2, ONE Gas, Waste Management
 - 20 kg/day PEM electrolyzer in H70 SimpleFuel: MHI, SoCalGas, TACC
 - Emulated wind and solar power through UT CEM microgrid

Large scale, industry H₂ user

 100kW fuel cell powering Texas Advanced Computing Center

Vehicle refueling

- Published SAE J2601-4 fueling of 7-10 Toyota Mirai's
- Drones included

7

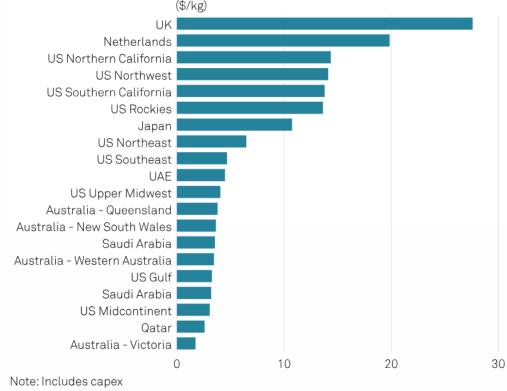
Sobre el Hydrogeno

Contact: OHI@gti.energy

Current uses of H2

- Petroleum Refining
- Ammonia Production
- Methanol Production
- Electronics and Semiconductor Industry
- Metal Production
- Food Industry
- Rocket Propulsion
- Chemical Manufacturing
- Glass Industry
- Energy Storage
- Power Generation

Current sources of H2

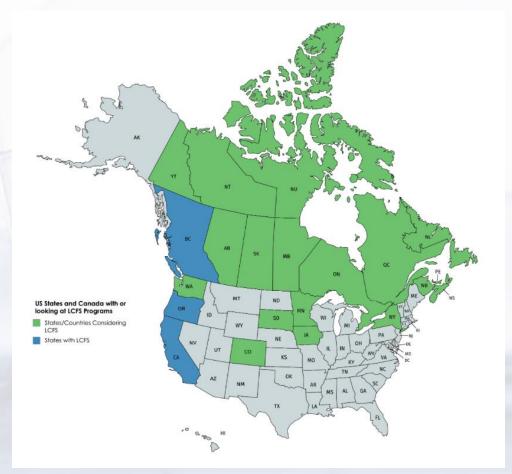


- Natural Gas Reforming (Steam Methane Reforming SMR)
- Partial Oxidation (POX) of Natural Gas
- Autothermal Reforming (ATR)
- Methane Pyrolysis
- Coal Gasification
- Biomass Gasification
- Electrolysis
- Biological Production
- Geologic Hydrogen

Production Costs

- Hydrogen production via unabated (no CCS) SRM for US Gulf Coast was the cheapest globally for December 2022 at \$1.27/kg.
- Southern California alkaline electrolysis more than doubled over November, averaging \$13.79/kg in December.
- UK PEM electrolysis remained the most expensive production pathway globally, averaging **\$32.41/kg**, up over 30% on the month.

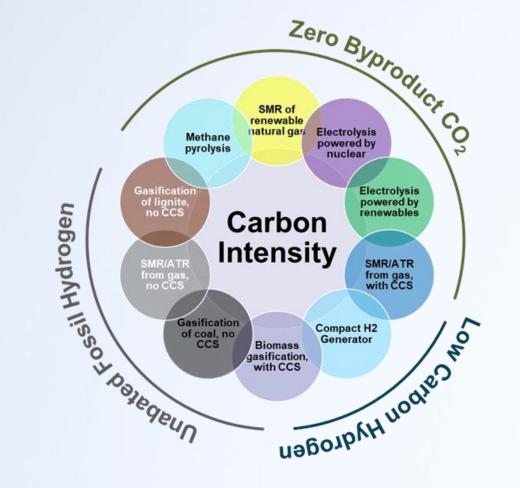
Average December 2022 hydrogen production costs, **8** alkaline electrolysis



Source: S&P Global Commodity Insights

Source: S&P Global Insights. Cold December boosts hydrogen production costs, as market price indications emerge

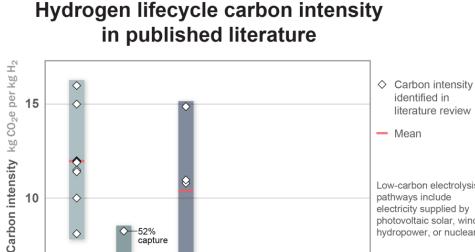
A plethora of Incentives inversely proportional to the Carbon Intensity of Hydrogen



- LCFS
- IRA (45V, 45Q, 45B, 45Z)
- RED II
- Others

Contact: OHI@gti.energy

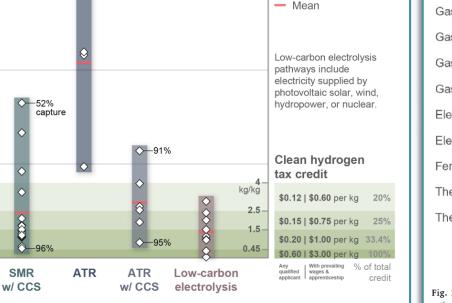
OPEN HYDROGEN INITIATIVE *CI of H*₂ production has significant variability among 'colors'

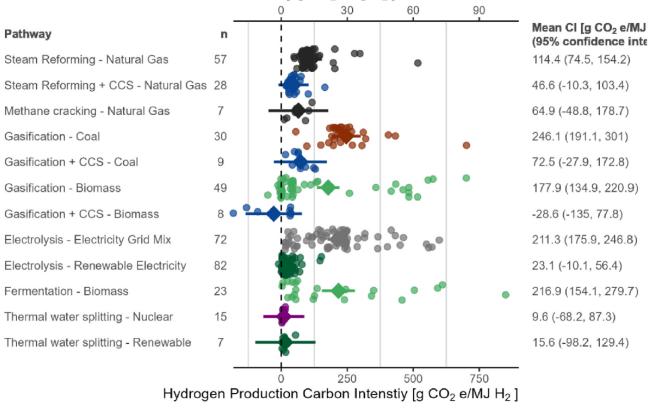


Risks of Reliance on the Color Wheel Include:

- Fracture hydrogen markets along color boundaries
- Stifle innovation by boxing out alternatives
- Lack of standardization and transparency around color nomenclature
- Deeply inaccurate

OPEN HYDROGEN INITIATIVE *CI of H*₂ *production has significant variability among 'colors'*



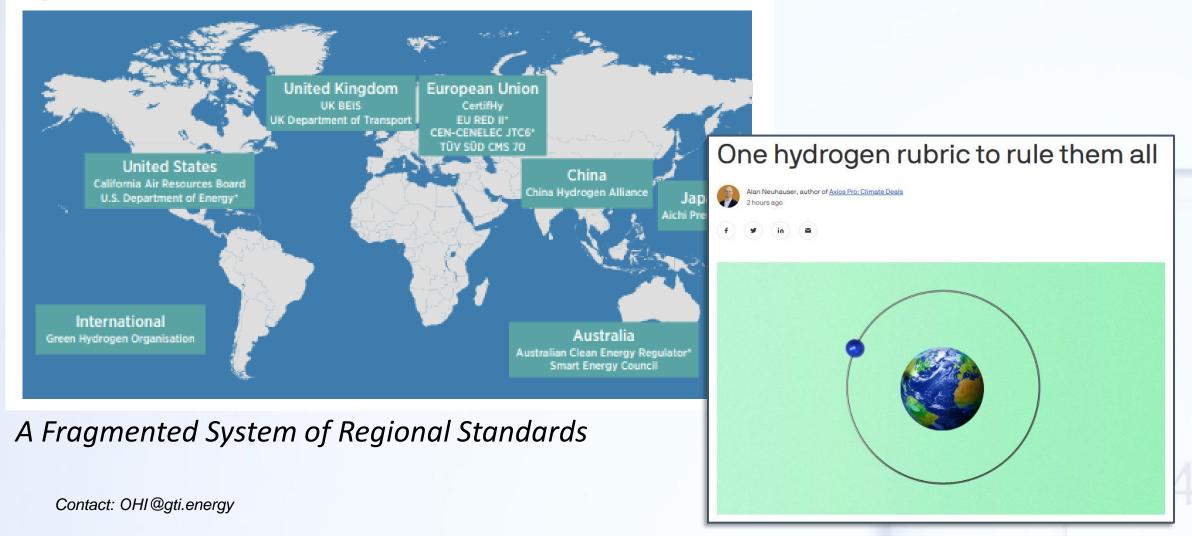

Elizabeth Abramson, Daniel Rodriguez & Dane McFarlane, Carbon Solutions LLC, 2022.

5

Λ

SMR

 $[kg CO_2 e/kg H_2]$


Fig. 2. Summary of the CI for the main Hydrogen production pathways. n = 387. The large diamond shows the average value with their respective 95% estimated confidence interval (for the mean) through a linear regression model using the hydrogen production pathways as categorical variables [121]. One CI for biomass gasification with a very high value of 1972 gCO₂e/MJ H₂ is omitted from the chart.

Source: Kendall et al. 2023

ONE TOOL TO HARMONIZE THE WAY WE CALCULATE THE CARBON INTENSITY OF H2

Figure 5 Map of organisations working on hydrogen certification

Sobre OHI

WHAT IS THE OPEN HYDROGEN INITIATIVE?

The Mission

The **Open Hydrogen Initiative** is laying the foundation for low-carbon hydrogen marketplaces

The Objective

OHI will develop an analytical toolkit to assess the carbon intensity of hydrogen production

- Versatile (customizable for Facility Level)
- Cradle-to-Gate (use agnostic)
- Compatible with International Norms & Best Practices
- Comprehensive Stakeholder Engagement
- Open Sourced

OHI PILLARS OF SUCCESS

COMPATIBLE **OPEN SOURCE** CREDIBLE TRANSPARENT PRAGMATIC

Benefits and Motivation

Regionally sensitive technology deployment

→ A **consolidated** hydrogen marketplace

Greater incentive to innovate and invest

- Less barriers to **financing** new projects
- **Faster** and **cheaper** hydrogen adoption

Technology-agnostic policy and regulation

Technical Solution

Cradle-to-Gate Life Cycle Analysis

Data Quality Confidence Metric

Best practices for data collection, tracking, traceability, and reporting

Full suite of industry demonstrations

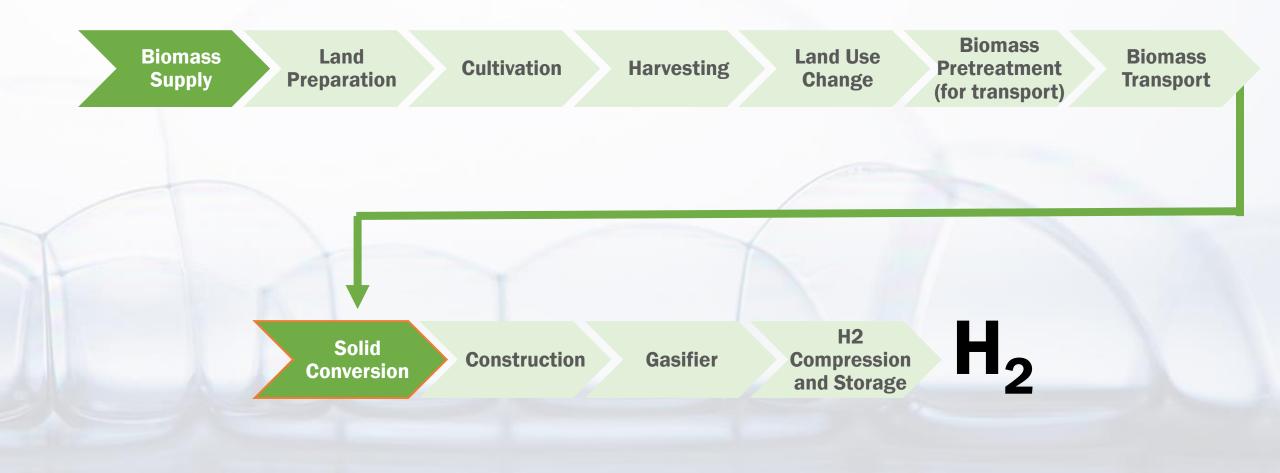
Contact: OHI@qti.energy

Como creamos OHI?

Contact: OHI@gti.energy

	ICAL TEAM ership & Research	h Teams	Saad Siddique Gas Conversion	Bob Stevens Solid Conversion
Zane McDonald Executive Director	Tim Skone NETL LCA Lead	Michael Bradford Sold Conversion Lead	Ansh Nasta Power Conversion	Travis Warner CO2 Management
Rosa Dominguez- Faus Technical Director	Alan Hayse S&P Global Market Lead	Asmara Soomro Solid Conversion	Wade Mao Power Conversion	Shirley Sam Power Supply
Ally Reilly Ext. Relations Manager	Jorge Izar- Tenorio Biomass & RNG	Matt Davidson Solid Conversion	Greg Hackett Power Conversion	Victoria Toetz Power Supply
Dr. Paula Gant Exec. Advisor & CEO GTI Energy	Matt Jamieson Lead	David V. Wagener Gas Conversion Lead	Michelle Krynock CO2 Management Lead	Scott Matthews NG Supply Lead
Kristine Wiley Exec. Advisor & SVP H2 Tech Center	Megan Henrikson NETL Coordinator	Patrick Littlewood Solid Conversion	Bob Wallace Biomass & RNG Lead	John White Power Supply
Shannon Katcher Exec. Advisor & VP Data & Digitalization	John Brewer Power Supply	Hari Mantripragada CO2 Management	Joseph Chou Power Supply	Mike Blackhurst NG Supply
Derek Wissmiller Exec. Advisor & Dir. Energy Systems	Ron Stanis Power Conversion Lead	Sheik Afzal Gas Conversion	Srijana Rai Biomass & RNG	Eric Lewis Gas Conversion

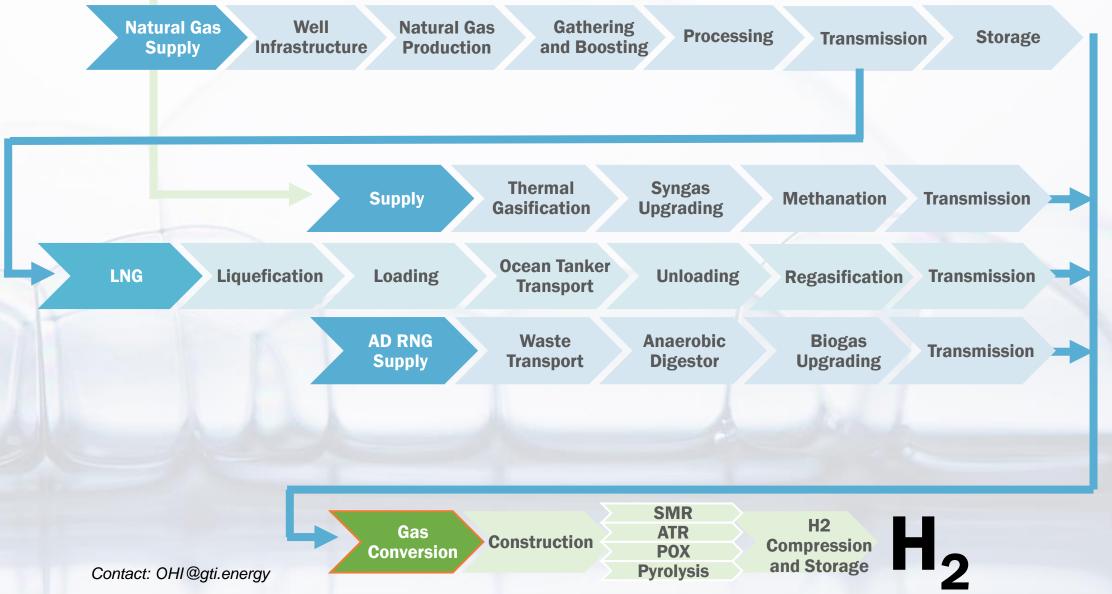
Selection of Hydrogen Production Technologies



- Hydrogen Production Technologies
 - Solid Conversion biomass pretreatment (sizing, treatment specific to the plant), ASU, Hydrocarbon gasification, pressure swing absorption, sulfur recovery, particulate controls, NOx controls, CO₂ separation, cooling systems
 - Gas Conversion SMR, ATR, POX, Pyrolysis, water gas shift, PSA off-gas treatment, pre-reforming treatment
 - **Power Conversion** PEM, ALK, SOEC, AEM
- Feedstock Supply:
 - Biomass & RNG biomass supply (various sources considered), collection, dehydration, pelletizing, digestion, sulfide removal, biogas upgrading, transportation & compression, gas refining, solid biomass processing
 - Feedstock Supply: Natural Gas well exploration and development, oil and gas separation, NGL separation, gas processing plant, non-hydrocarbon gas removal, venting/flaring, storage, compression, transmission, distribution,
 - Feedstock Supply: Power Generation Infrastructure manufacturing (solar & wind), primary energy supply, prime mover, step-up transformer, transmission, distribution
- **CO2 Management** –-carbon separation, electric and thermal carbon capture, purification, compression, subsurface site development, transmission, storage, leakage

23

Solid Conversion Route



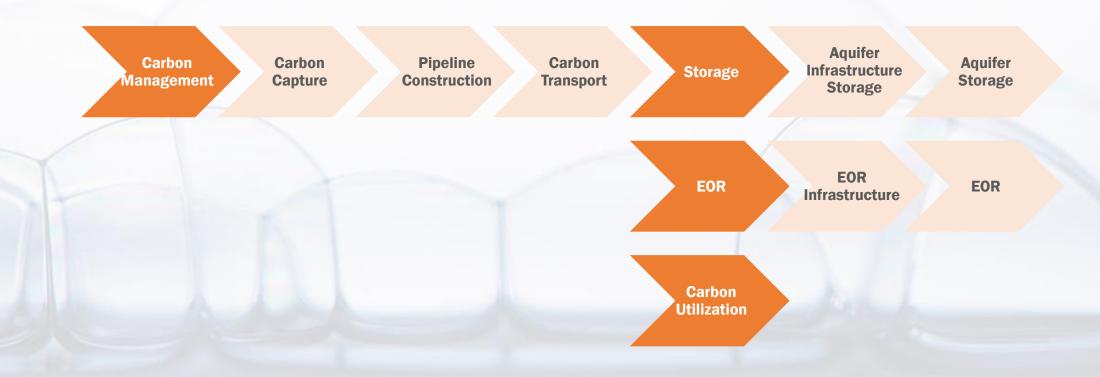
Contact: OHI@gti.energy

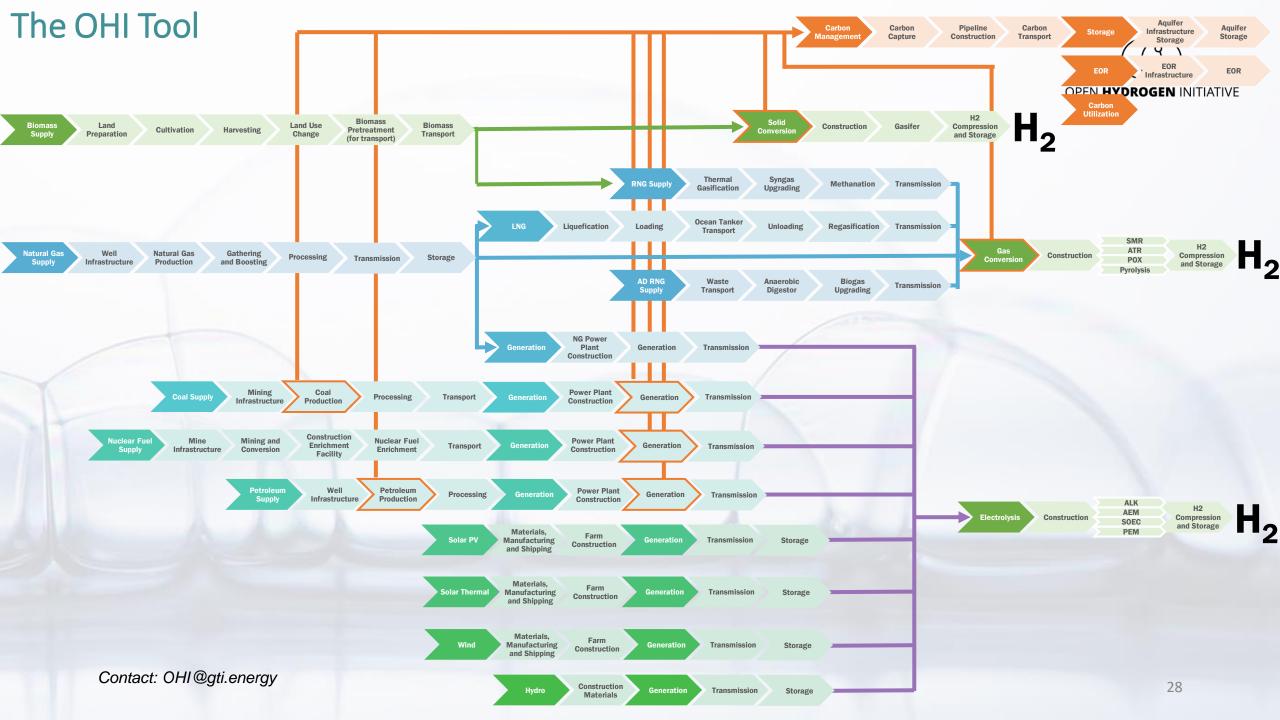
Gas Conversion Route

Power Conversion Route

Gathering **NG Power** Well Natural Gas Natural Gas and Processing Storage Transmission Generation Plant Generation Transmission Supply Infrastructure Production **Boosting** Construction Mining Power Plant Coal **Coal Supply** Infrastructur Processing Transport Constructio Transmission Generation Generation Production е n Nuclear Construction **Mining and Nuclear Fuel** Mine **Power Plant** Enrichment Fuel Generation Transport Generation Transmission Infrastructure Conversion Construction Supply Enrichment Facility Well Petroleum Petroleum **Power Plant** Processing Generation Generation Transmission Production Supply Infrastructure Construction Materials, Farm Solar PV Manufacturing Storage Generation Transmission Construction and Shipping Materials. Solar Farm Manufacturing Generation Transmission Storage Construction Thermal and Shipping Materials, Farm Transmissio Wind Manufacturing Generation Storage Construction n and Shipping Construction Transmissio Hydro Generation Storage **Materials** n ALK H2 AEM **Electrolysis Compression** Contact: OHI@gti.energy Construction

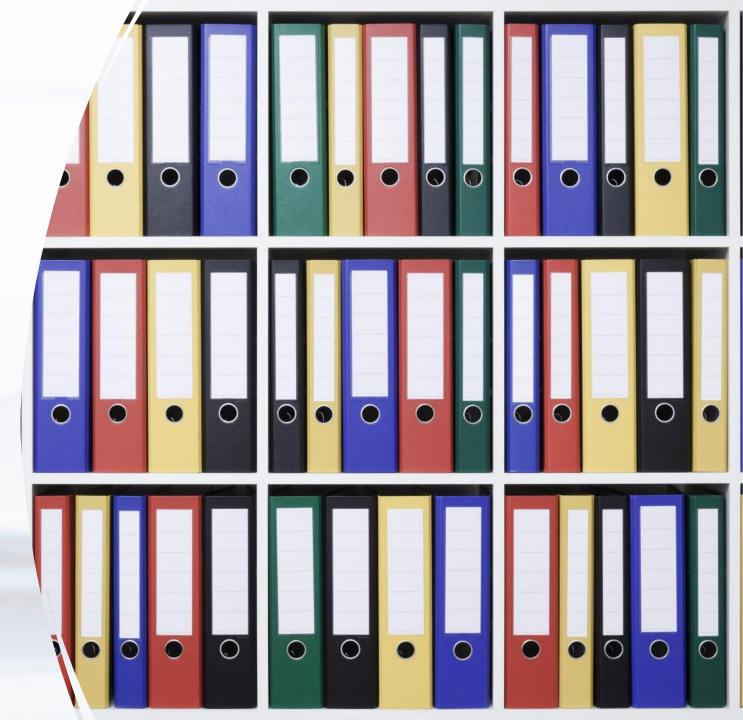
SOEC


PEM


and Storage

OPEN HYDROGEN INITIATIVE

Carbon Management



Unit Process Library

- Lists materials and heat flows, parameter scenarios, references, calculations and assumptions, and initial data quality assessment
- Thorough documentation

Contact: OHI@gti.energy

Unit Process Example

												_				
Geographical Coverage:	United States			Goal and Sco												
Region	N/A			Reference Flor	w: 1 kg of Hydroge	en, 100 vol-%, 2	90 psia (1.99 MF	Pa)								
Year Data Best Represents:	2018															
Process Type:	Basic Process (BP)			This unit proce	ss provides a sum	nmary of relevar	nt input and output	ut flows	ŧ						Calculati	ione
Process Scope:	Gate-to-Gate Process (GG)		hydrogen. This process occurs in a series of SOECs fueled by electricity												Calculati	
Allocation Applied: No				Hydrogen (H2) 100 vol.% 200 psia Calculations [Yellow-highlight cells are carried to data summ								nary]				References
Completeness:	Individual Relevant Flows Captured								Subheader as Needed	Value Poplar Va	lue Com Stover Ve	lue Lobiolly Pine Units	Notes	Assumptions		
Flows Aggregated in Data Set:	Process I Energy Use Energy P&D	Material P&D								20.9	28.8	18.6 kg biom		Assumptions		5
nows Aggregated in bata set.	V Frocess V Energy Use Energy Pab			Note: All inputs	and outputs are n	normalized per th	he reference flov	w (e.g.,	Biomass, Air Demand, kg O2 / kg H2	95.7	127.6	88.4 kg air / l				5
									Natural gas demand, kg CH4 / kg H2	0.542	0.747		/ kg For biomass drying			5
									Pure CO2 produced, kg CO2 / kg H2	29.8	38.1	28.8 kg CO2				5
							SECTION II: P		Sulphur acid gas produced, kg / kg H2	0.0027	0.0036	0.000119901 kg / kg ł				5
This	section includes adjustable parameters, calculations need	led to support adjustable i	oarameters, and	d flow calculati	ions based upon a	diustable parar	neters.Hover ove	er "Mear	Ash produced, kg Ash / kg H2	0.54	2.12	0.34 kg Ash	/ kg H2			5
Parameter Name	Formula	Value			Std Dev or Max		Unit	Refer	Electricity requirement, H2 compression	2.34	2.34	2.34 MJ / kg	H2 Quadratic approximation	, accurate +/-5% between 300	and 1500 psi	5
6 h2 out		1.00E+00				Technosphere	ka/ka	1	Electricity generation, Tail Gas Utilization		8.70	7.70 MJ / kg				
17 process withdrawn		1.20E+01				Technosphere	ka/ka	1	Net electricity import, MJ / kg H2	30.24	37.10			ninus steam turbine, plus H2 co	ompression)	5
17 cooling withdrawn		1.28E+02				Elementary	kg/kg	- '	CO2 flue produced from biomass drying		2.06		/ kg Fossil CO2 flue from nat			
6 o2 out		7.94E+00				Elementary	ka/ka	-	CO2 flue from tail gas utilization (biogen		6.50		/ kg Biogenic CO2 flue from t	ail gas utilization from PSA		
15 electricity net		3.98E+01				Technosphere	kWh/kg	-	CO2 flue gas (total), kg CO2 / kg H2	6.76	8.56	6.58 kg CO2				5
14 natural gas in		4.32E-01				Technosphere	kg/kg		Ammonia produced, kg NH3 / kg H2	0.0099	0.00739	0.0077 kg NH3				5
		4.32E-01 1.25E+02				Elementary	ka/ka		VOC emissions from drying, kg/kg H2 PM solids handling, kg / kg H2	0.0167 1.476E-05	0.023 2.128E-05	0.0149 kg VOC	s / kg H2 kg H2 (<30 microns)	Estimated based on ash and	d a stid for a d. C. as (s.	5
14 h2o discharged End of List	<select entire="" insert="" new="" row="" row,="" then="" this=""></select>	1.25E+02				Elementary	KQ/KQ	_	Hydrogen purity factor	1.476E-05 1.09	2.128E-05	1.304E-05 kg PM / 1.09 N/A		ditional feed, power etc. require		
End of List	<select entire="" insert="" new="" row="" row,="" then="" this=""></select>								Hydrogen purity factor toggle	1.09	1.09	1.09 N/A		ty factor (toggled on Data Sum		/ 112
									Thydrogen punky lactor toggie	1.00	1.00	1.00 1414	loggie for hydrogen pan	ly lactor (toggica on Data oam	nory (ab)	
							SECTION III: I			Fugitive emission	ns:			Assumes all gas leaks are s	yngas	-
					ered for this unit pr				# of valves in plant	160	160	160				
Parameter	Flow Name	Value	Units	Parameter	Unit	Total	Units per RF	Tra	# of flanges in plant	1200	1200	1200				
process_withdrawn	Technosphere Flows/Water, purified	1	kg	1.20E+01		11.99	~		# of compressors in plant	8	8	8				
cooling withdrawn	Elementary Flows/resource/water/Water, fresh		kg	1.28E+02		127.50			Syngas CO content	34%	34%	34%				
electricity net	Technosphere Flows/Electricity, AC, 120 V	1	kWh	3.98E+01		39.76	kWh		Syngas H2 content	33%	33%	33%				_
natural gas in	Technosphere Flows/Natural gas, combusted	1	kg	4.32E-01	kg/kg	0.43	kg		Syngas CO2 content	33%	33%	33%				
End of List	<select entire="" insert="" new="" row="" row,="" then="" this=""></select>	Factor				Amount			Fugitive emissions, kg/hr	1.258445645	1.258445645	1.258445645 kg/hr	lb/hr converted to kg / hr			7

													Data Or	ality Index							
		7	This section i	ncludes all ou	put flows consider	ed for this unit (process. Hove	21													
Parameter	Flow Name		Value	Units	Parameter	Unit	Total	Data quality	is determined us	sing the EPA pe	digree matrices	for process-leve	I and flow-le	vel scores.							
h2 out	Hydrogen, 100 vol-%, 290 psia (1.99 MPa)		1	1 kg	1.00E+00 k	g/kg	1.0	0													
o2 out	Elementary Flows/emission/air/Oxygen			1 ka	7.94E+00 k	a/ka	7.9	Process-L	evel DQI De	termination											
h2o_discharged	Elementary Flows/emission/water/Water, fresh		1	1 kg	1.25E+02 k		125.0	0						Flow Type	Point Value	Flows Expected	Flows Evaluated	% Complete	Calculated Score	Notes	Definition
End of List	<select entire="" insert="" new="" row="" row,="" then="" this=""></select>		Factor								Process	_				Expected	Evaluatou				Primary functional process output to
					· · ·				1	Process Review	Completenes	s		Reference product	6.8	1	1	100%	6.8		which all values are scaled
Note: Inventory items not in	cluded are assumed to be zero based on best e	naineerina iuda	ment or as	sumed to be	zero because no	data was ava	ilable to cate	Biomass o	asification	4	2			Co-products	13.5	1	1	100%	13.5	Captured CO2	Secondary functional process outputs
								Indicator	1	2	3	4	5 (default)	Intermediate inputs	27.0	4	3	75%	20.3	Construction is not included in this process	All purchased inputs, including non-durables, durables, and infrastructures
									Documented	Documented reviews by a				Land occupied/ transformed	0.0	0	0	100%	0.0		Land occupied or converted
	Assumptions						Process reviews by a minimum of two Documented Documented No minimum of two types of review by a third review by an documented						Raw material/energy inputs								
Assumption # Description	heric process as described by the block flow diagram to the right.	References	Assur	nption #1. Generic b	lock flow diagram.			review	types ¹ of third party reviewers	reviewers, with one being a third party		internal reviewer	review	Raw material inputs	5.4	1	1	100%	5.4	Air	Includes fossil resources, minerals and metals, biomass, and carbon dioxide sequestered
2 The plant production capacity is 5	50,000 kg H2/day roducts are removed for further treatment/disposal (technosphere)	5	<u>9</u>			teur o laster 🖉 Itaan Litelaute		Process completeness	>80% of determined flows have been evaluated and giver	60-79% of determined flows have been evaluated and	40-59% of determined flows have been evaluated and	flows have been c	Process ompleteness not scored	Raw energy inputs	0.0	0	0	100%	0.0		Energy from wind, sunlight, geothermal, waves, etc. captured in unit process
5 Syngas conversion is done by sou	r shift, acid gas treatment by a Selexol-type process	5	우	ACTIVAL CONTRACT					a value	given a value		given a value		Water inputs	6.8	1	0	0%	0.0	cooling, cooling tower	Treated or untreated water input
6 H2 purification is done by PSA, ta 7 Excess steam is used to make elec		5			BOMAS GASHGATION Rectrige	 TRUTE ONGAL 		Reviewer d	ocumentation of	hecklist				Waste to treatment						lloss) not accounted for	
8 The CO2 product leaves the batte	ry limit but is not emitted; CO2 emitted in flue is accounted for separately		- <u>-</u>		Turbates All Statements			Type of review		Goal and scope Raw data		rocess inventory)		Solid and hazardous waste	6.8	3	2	67%	4.5	Ash, captured VOCs; not accounted for VOC capture bed material	Solid and hazardous waste sent to a treatment facility or reclaimed/recycled
		-						Elements of rev	view	Aggregated proc	ess inventory tly terminated system	m		Liquid waste	6.8	1	1	100%	6.8	Ammonia in wastewater	Wastewater
			1		Tel. 64 07 00 AUTOR SUAVA MICHA UNUERON 7000	Participant Participant				LCIA methods th				Emissions to air							
				IN DEMPCROKINANSK LIFUTHS			Tertic -			Dataset docume				GHGs	6.8	1	1	100%	6.8	CO2 in flue	e.g. CO2, CH4, N2O, SF6
			() MED	10,1746			- I -			Check of the dat	a quality indicators (D			000	5.0						[0.g. 0.0 L, 0.1.]

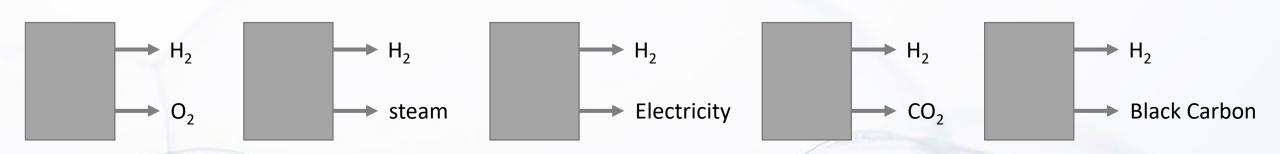
OPEN HYDROGEN INITIATIVE

Unit Process Library

RNG & Biomass Supply	Power Generation	Natural Gas Supply				
Anaerobic Digestion of Animal Manure	Battery Storage	LNG Liquifaction				
Anaerobic Digestion of MSW	Coal Power Gen	LNG Loading				
Anaerobic Digestion of Wastewater	Hydro Power Gen	LNG Ocean Transportation				
Biogas Upgrading via Water Scrubbing	Natural Gas Power Gen	LNG Unloading				
Biogas Upgrading via MDEA Scrubbing	Nuclear Power Gen	LNG Regasification				
Biogas Upgrading via MEA Scrubbing	Oil Power Gen	Natural Gas Compression				
Biogas Pretreatment	Solar PV	Gathering & Boosting				
Methanation for Thermal Gasification	Solar Thermal	Pipeline Transportation				
Biomass Cultivation	Uranium Mining	Natural Gas Processing				
Biomass Harvesting	Wind	Natural Gas Production				
Land Preparation	Transmission & Distribution	Natural Gas Storage				
Land Use Change		Transmission Station				
Syngas Cleanup for Thermal Gasification	Power Conversion					
Thermal Gasification	AEM Electrolysis	Carbon Management				
	Alkaline Electrolysis	CO2 Utilization				
Gas Conversion	Solid Oxide Electrolysis	CO2 Capture				
Autothermal Reforming	PEM Electrolysis	CO2 EOR				
Methane Pyrolysis		CO2 Saline Aquifer Storage				
POX	Solid Conversion	CO2 Transport				
Steam Methane Reforming	Thermal Gasification	CO2 Utilization				

Important LCA questions:

- What is the Functional Unit?
 - H2 purity
 - H2 compression level
- What is the appropriate scale of the facilities?
- LCA Scope: Well-to-gate (not including transport)
 - Should we CAPEX emissions? (materiality principle)
 - Should we include LUC and iLUC?
 - Include H2 fugitive emissions?
- What kind of feedstocks are appropriate?
- How do we treat biogenic products?
- How to treat process waste in the LCA?

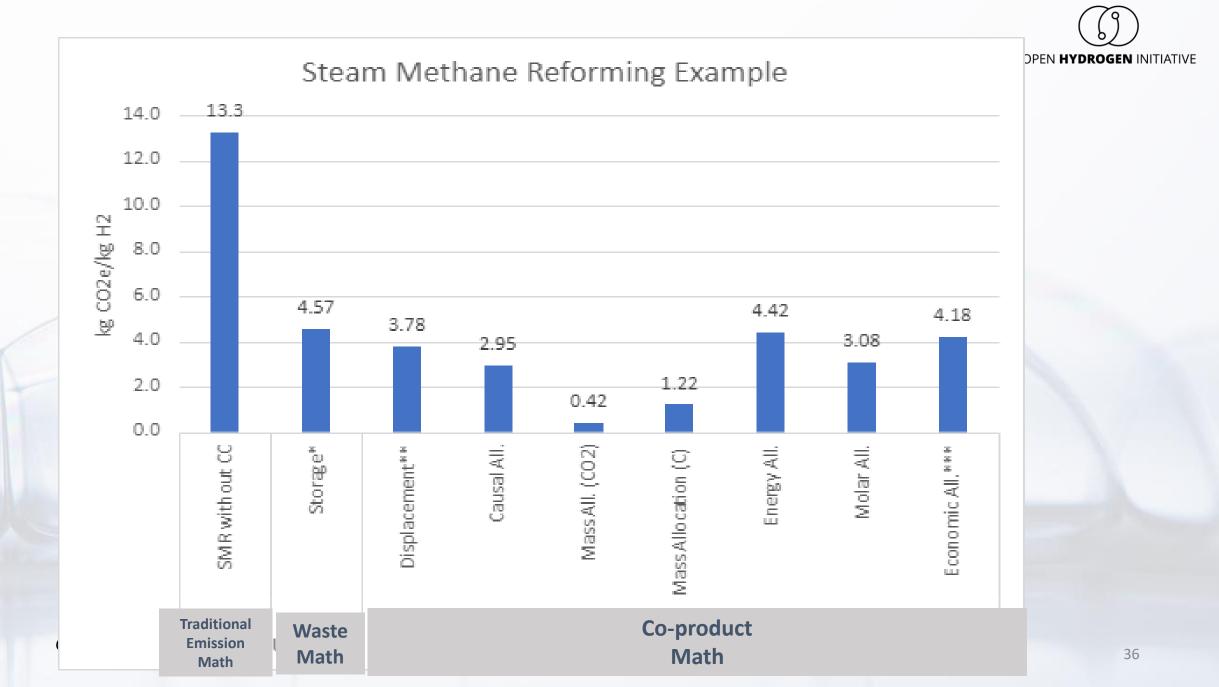

- What CCU types are we including?
- Market mechanism: RECS, PPA
- Policy mechanism: Avoidance credit
- Materiality according to ISO
- Allocation methods
- How do we deal with regionality and globality?
- Block flow diagrams
 - Flows to be included/excluded
 - Wastes and byproducts
- CAPEX emissions
- H2 fugitive emissions

"In any pathway, the emission burden must be apportioned to the different coproducts"

What kind of by-products in each route?

Allocation methods:

- Partition
- System expansion with displacement or substitution
- Energy
- Mass
- Molar
- Enthalpy
- Market


Contact: OHI@gti.energy

Hierarchy of Allocation methods:

- Physical
- Displacement
- Market

OPEN HYDROGEN INITIATIVE **Burden** CO2 is a **co-product** CO2 Burden CO2 is a waste **Co-products** Burden Steam and/or **Co-products** Steam and/or CO2 **Co-products** Wastes Steam and/or Wastes CO2 Contact: OHI@gti.energy 35

CO2 is an emission

Adopting best practices

Panel de Expertos Independientes

Dr. Anne-Sophie Corbeau, Columbia University

Van Ness Feldman

Dr. Alissa Kendall, University of California, Davis

THE UNIVERSITY OF NEWCASTLE AUSTRALIA

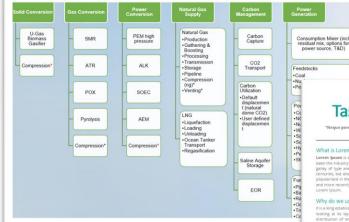
Dr. Dianne Wiley, University of Newcastle, Australia

Dr. Rachel Meidl, **Rice University**

QUEEN MARY UNIVERSITY OF LONDON

Dr. Paul Balcombe,

Queen Mary



Dr. Michael Webber, University of Texas, Austin

Unit Process Files + Memo

Anerobic Digestion preparation 15 Biogas upgrading Cultivation

Land

Tasks 1 and 2 Memo

.

Neque porro quisquam est qui dolorem ipsum quia dolor sit amet, i adipisci velit..."

What is Lorem Ipsum?

Lorem lpsum is simply dummy text of the printing and typesetting industry. Lorem lpsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five gency or spe also shown in the electronic crypts place involution generality unchanged. It was comunity, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularitied in the 1960s with the release of Letrate thets constraining forem ipsum passages, and more recordly with desixed op publishing software like Aldus PageMaker including versions of

Why do we use it?

The standard Interested. Sect also reproduces translation by H

It is a long established fact that a reader will be distracted by the readable content of a page Including a tist layout. The point of using Lorem (psum) is that it has a mome of lass normal distribution of letters, as opported to using 'Contert here, content here', making it look like recatabile English. Many destop publishing packages and web page affors now use. Lorem (psum as their default model text, and a search for "forem (psum' will uncover many web sites is a set of the second sec still in their infancy. Various versions have evolved over the years, sometimes by accident, sometimes on purpose (injected humour and the like).

Where does it come from?

Contrary to popular belief, Lorem Ipsum is not simply random text, it has roots in a piece of Commany to popular other current inplane on the simply removes it must need to be a classical Latin iterature from 4.8 BC making it over 2000 years oil. Althord McCinrock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consecturer, from a Larem Journ passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem lipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by section 1,10.32.

Tasks 1-2

7 working groups: Different subject matter expertise

LCA Tool + Protocols

PRODUCT ACTIVITY

I TRANSPORT

11/1/1/1/

CATEGORY ACTIVITY

......

OHI Tool Guidance

"Neque porro quisquam est qui dolorem ipsum quia dolor sit amet, consectetu adipisci velit..."

What is Lorem Insum?

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has Lorem pasm is simply ounny text or the princing and oppestion mousiry, corem i pour has been the industry's standard dummy text ver since the 1500s, when an uninown princer took a galley of type and scrambled it to make a type specimen book. It has survived not only fine centuries, but also the leap into electronic typestering, remaining essentially unchanged. It was popularised in the 1960s with the release of Letrates these scontaining lorem (psum passages, and more recently with desktop publishing software like Aldus PageMake

Why do we use it?

It is a long established fact that a reader will be distracted by the readable content of a pa It is a long established fact that a reader will be distanced by the redisable content of a page where longing at its layors. The point of using Lorent plaus its that it has a more ories clean normal longing that layors are set of the set o

Where does it come from?

Virtue que a Lonie monitori desargo la polyación del Lonio de la poly andone sue El has rosti la e piece al desargo la polyación del Lonio de la poly de la polyación de la polyación desargo la polyación del la polyación de la polyación de la polyación de prefessor at Hangden-Sydreg Collega en Vigina, losied ya pre el fue more elsorare Lane nortis, consectarro, fena la cierna liguan passage, anal gogi trough ten des de he vend in classical literature, discoverat de undostable source. Lorem (passa corres from sections 10.102 and 11.102 d'es finals benorma el Malencom (He Laterma el Galo and Pol) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the

The standard chunk of Lorem Ipsum used since the 1500s is reproduced below for those interested. Sections 1.10.32 and 1.10.33 from "de Finibus Bonorum et Malorum" by Cicero are nied by English versions from the 1914

Tasks 3-5

(= Im

1 working group: LCA expertise

Contact: OHI@gti.energy

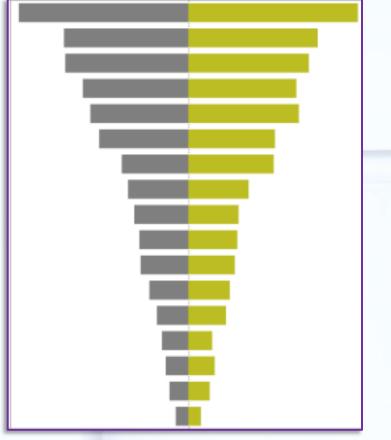
Extremely versatile

- Unit process data serving as defaults, but users can customize their process.
- Most influential parameters will be visible on this sheet for user adjustment.

					Hydrogen Producti	ion Technology	
Main Inputs	On this sheet, u	On this sheet, users can customize their hydrogen production process and influential upstream parameters.				Steam Methane Reforming	
					Biomass Gasification wit	th Carbon Capture	
			Steam Methane Reformi	ng	Methane Pyrolysis Partial Oxidation		
					Proton Exchange Memb	orane (PEM) Electro	
Is there a co-prod				Locat	ior Solid Oxide Electrolysis		
What co-product	t(s)?				Steam Methane Reform Steam Methane Reform	ing with Carbon C	
Define was a second		Custom			Other		
Define your process: Inputs		Custom	DQI	Natural Gas Mix:	Fossil Natural Gas	100%	
Electricity		0.18 kWh	2,2,1,1,3		iquefied Natural Gas	100%	
Natural Gas		3.08 kg			enwable Natural Gas		
			2,2,1,1,3	н	enwable Natural Gas		
CAPEX		kg CO ₂ e					
Outputs			DQI	Electricity Mix:			
Hydrogen		1 kg	2,2,1,1,3		Grid Electricity	100%	
Carbon dioxide		9.00 kg	2,2,1,1,3		e (behind the meter)		
Electricity		kWh	2,2,1,1,3		rchasing Agreements		
Steam		MJ	0	Renewab	le Energy Certificates		
Inputs			DQI				
Electricity		14 kWh					
Natural Gas		4 kg					
CAPEX		kg CO ₂ e					
Outputs		kg CO ₂ e	DQI				
Hydrogen		1 kg	DQI				
Main Inputs	On this sheet, u	isers can customize their hydrogen p	roduction process and influ	ential upstream parameters.	Hydrogen Production		
Main Inputs	On this sheet, u		roduction process and influ	ential upstream parameters.	Hydrogen Production Steam Methane R	Reforming	
Main Inputs	On this sheet, u					Reforming <selec Defaul</selec 	
Main Inputs	On this sheet, u		roduction process and influ			Reforming < select Defaul System	
Main Inputs					Steam Methane R	Reforming <select Defaul System Causal Mass A</select 	
· [luct?			g	Steam Methane R	Reforming <select Defaul System Causal</select 	
Is there a co-produ What co-product(luct?	isers can customize their hydrogen p		g Locatio	Steam Methane R	Reforming <select Defaul System Causal Mass A</select 	
Is there a co-produ What co-product(Define your process:	luct?		Steam Methane Reformin	g	Steam Methane R	Reforming System Causal Mass A Energy	
Is there a co-produ What co-product(Define your process: Inputs	luct?	isers can customize their hydrogen p	Steam Methane Reformin	g Locatio	Steam Methane R	Reforming <select Defaul System Causal Mass A</select 	
Is there a co-produ What co-product Define your process: Inputs Electricity	luct?	users can customize their hydrogen p Custom	DQI 2,2,1,1,3	g Locatio Natural Gas Mix:	Steam Methane R	Reforming System Causal Mass A Energy	
Is there a co-prod What co-product Define your process: Inputs Electricity Natural Gas	luct?	users can customize their hydrogen p Custom 0.18 kWh 3.08 kg	Steam Methane Reformin	g Locatio Natural Gas Mix:	Steam Methane R	Reforming System Causal Mass A Energy	
Is there a co-produ What co-product(Define your process: Inputs Electricity Natural Gas CAPEX	luct?	users can customize their hydrogen p Custom	DQI 2,2,1,1,3 2,2,1,1,3	g Locatio Natural Gas Mix:	Steam Methane R	Reforming System Causal Mass A Energy	
Is there a co-produ What co-product(Define your process: Inputs Electricity Natural Gas CAPEX Outputs	luct?	sers can customize their hydrogen p Custom 0.18 kWh 3.08 kg kg CO ₂ e	DQI 2,2,1,1,3 2,2,1,1,3 DQI	g Locatio Natural Gas Mix:	Steam Methane R	Reforming <select System Causal Mass A Energy 100%</select 	
Is there a co-produ What co-product(Define your process: Inputs Electricity Natural Gas CAPEX Outputs Hydrogen	luct?	sers can customize their hydrogen p Custom 0.18 kWh 3.08 kg kg CO ₂ e 1 kg	DQl 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 DQl 2,2,1,1,3	8 Location Natural Gas Mix: Lio Re Electricity Mix:	Steam Methane R	Reforming System Causal Mass A Energy	
Is there a co-product What co-product(Define your process: Inputs Electricity Natural Gas CAPEX Outputs Hydrogen Carbon dioxide	luct?	USERS can customize their hydrogen p Custom 0.18 kWh 3.08 kg kg CO ₂ e 1 kg 9.00 kg	DQI 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3	g Locatic Natural Gas Mix: Lic Re Electricity Mix: On-site	Steam Methane R	Reforming <select System Causal Mass A Energy 100%</select 	
Is there a co-produ What co-product(Define your process: Inputs Electricity Natural Gas CAPEX Outputs Hydrogen Carbon dioxide Electricity	luct?	sers can customize their hydrogen p Custom 0.18 kWh 3.08 kg kg CO ₂ e 1 kg 9.00 kg kWh	DQ/ 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3	E Locatio Natural Gas Mix: Lio Electricity Mix: On-site Power Purc	Steam Methane R	Reforming <select System Causal Mass A Energy 100%</select 	
Is there a co-product What co-product(Define your process: Inputs Electricity Natural Gas CAPEX Outputs Hydrogen Carbon dioxide	luct?	USERS can customize their hydrogen p Custom 0.18 kWh 3.08 kg kg CO ₂ e 1 kg 9.00 kg	DQI 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3	E Locatio Natural Gas Mix: Lio Electricity Mix: On-site Power Purc	Steam Methane R	Reforming <select System Causal Mass A Energy 100%</select 	
Is there a co-produ What co-product(Define your process: Inputs Electricity Natural Gas CAPEX Outputs Hydrogen Carbon dioxide Electricity	luct?	sers can customize their hydrogen p Custom 0.18 kWh 3.08 kg kg CO ₂ e 1 kg 9.00 kg kWh	DQ/ 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3	E Locatio Natural Gas Mix: Lio Electricity Mix: On-site Power Purc	Steam Methane R	Reforming <select System Causal Mass A Energy 100%</select 	
Is there a co-prod What co-product Define your process: Inputs Electricity Natural Gas CAPEX Outputs Hydrogen Carbon dioxide Electricity Steam	luct?	sers can customize their hydrogen p Custom 0.18 kWh 3.08 kg kg CO ₂ e 1 kg 9.00 kg kWh	DQl 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 0	E Locatio Natural Gas Mix: Lio Electricity Mix: On-site Power Purc	Steam Methane R	Reforming <select System Causal Mass A Energy 100%</select 	
Is there a co-produ What co-product(Define your process: Inputs Electricity Natural Gas CAPEX Outputs Hydrogen Carbon dioxide Electricity Steam	luct?	sers can customize their hydrogen p Custom 0.18 kWh 3.08 kg kg CO ₂ e 1 kg 9.00 kg kWh MJ	DQl 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 0	E Locatio Natural Gas Mix: Lio Electricity Mix: On-site Power Purc	Steam Methane R	Reforming <select System Causal Mass A Energy 100%</select 	
Is there a co-produ What co-product(Define your process: Inputs Electricity Natural Gas CAPEX Outputs Hydrogen Carbon dioxide Electricity Steam Inputs Electricity	luct?	sers can customize their hydrogen p Custom 0.18 kWh 3.08 kg kg CO2e 1 kg 9.00 kg kg kWh MJ 14 kWh	DQl 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 0	E Locatio Natural Gas Mix: Lio Electricity Mix: On-site Power Purc	Steam Methane R	Reforming <select System Causal Mass A Energy 100%</select 	
Is there a co-produ What co-product(Define your process: Inputs Electricity Natural Gas CAPEX Outputs Hydrogen Carbon dioxide Electricity Steam Inputs Electricity Natural Gas	luct?	sers can customize their hydrogen p Custom 0.18 kWh 3.08 kg kg CO ₂ e 1 kg 9.00 kg kWh MJ 14 kWh	DQl 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 2,2,1,1,3 0	E Locatio Natural Gas Mix: Lio Electricity Mix: On-site Power Purc	Steam Methane R	Reforming <select System Causal Mass A Energy 100%</select 	

Main Inputs Interface

Example: Data Selection

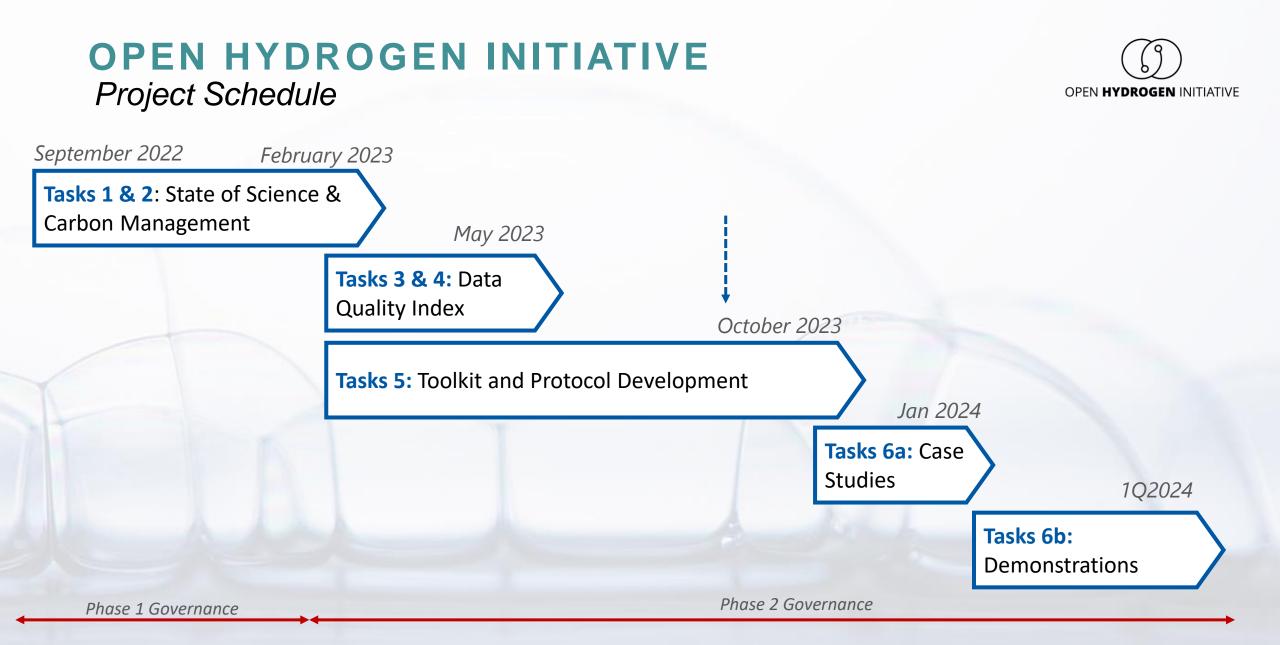


Location:	United States of America (the)			
Balancing Authority:		USA-PJM Interconnection, LLC		
Define your process:		Default		
Biomass	0.6%	<select from="" list=""></select>		
Coal	16.9%	Default Custom Mix		
Geothermal	0.0%	User Override		
Hydroelectric	1.3%			
Natural Gas	41.1%			
Nuclear	35.8%			
Oil	0.1%			
Solar Photovoltaic	0.8%			
Solar Thermal	0.0%			
Storage				
Wind	3.4%			
Other	0.0%			

How do we embrace complexity while still creating an operable tool?

Contribution Analysis

- Systematic procedures for estimating the effects of the choices made regarding methods and data on the outcome of a CFP study
- Identify top parameters that contribute to the majority of the LCA number
- Focus on getting the most accuracy for those



Data Quality Index: Dealing with Data Uncertainty

Percentage	Letter grade	Description
90 - 100	A +	Exceptional
80 - 89	Α	Excellent
70 - 79	в	Good
60 - 69	С	Satisfactory
<mark>50 - 59</mark>	D	Barely acceptable
<mark>0 – 49</mark>	F	Unacceptable

Contact: OHI@gti.energy

CASE STUDIES

- Case studies
 - Biomass gasification with CCS in Australia,
 - Which biomass?
 - From Australia?
 - ATR w/CC in UK with LNG imports from US
 - PEM electrolysis in Argentina with solar
- Demos
 - Shell, Enbridge, National Grid, Aurora, ExxonMobil

Case Studies

(4Q2023)

OHI Toolkit Demonstrations

Tool MVP

(3Q2023)

Public Launch

(2Q2024)

FOR DEMONSTRATIONS:

Industry

Demonstrations

(**1Q2024**)

- Mid-summer: Demonstration Charter and request for volunteers
- October 2023: Final deadline for volunteering
- Nov & Dec 2023: Stage-setting, coordination, information sharing
- January 2024: Demonstrations begin
- March 2024: Demonstrations conclude
- April 2024: Public Launch

Contact: OHI@gti.energy

Open Hydrogen Initiative

Contact: ohi@gti.energy

S&P Global Commodity Insights

OHI is end-use agnostic. We focus on crade-togate but will define system boundaries transparently and with flexibility

OHI will create transparent documentation on sources of data and methods.

OHI is end-use agnostic. We focus on crade-togate but will define system boundaries transparently and with flexibility

OHI will create transparent documentation on sources of data and methods.

OHI will develop Protocols

A single static value will always be incorrect when assessing the carbon intensity of individual hydrogen production at the facility level.

Instead of attempting to identify a standard value, governments and market participants should be collaborating to develop agreed-upon structures and methodologies for identification of high-fidelity measured values representative of real-time operation and supply-chain characteristics.

In doing so, carbon intensity calculations become reflective of the **real-world operations** of a single facility at a single point in time.

This approach not only increases accuracy, but also creates a structure that incentivizes the rapidly growing industry to implement incremental, facility-level decarbonization solutions that would otherwise not be captured in a less granular approach.

