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What this session is about

General thoughts and observations
Predictive Turnover Capability Architecture
Methodologies

Concepts

Business Examples

Key Takeaways



Cost of employee replacement?

“Direct replacement can cost companies up to 50%-60% of a worker’s annual salary, and that is
without the indirect costs associated with losing an employee

These include missed or delayed revenue, and loss of productivity and knowledge”
Source: Society for Human Resource Management

The Journey: Year-over-Year Undesired Turnover Decrease

Below
Benchmark
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https://www.shrm.org/hr-today/trends-and-forecasting/special-reports-and-expert-views/Documents/Retaining-Talent.pdf

| he opportunity

The problem

Reactive
HR is equipped for Empower HR to Planned actions can Undesired Turnover
reactive talent support managers be most effective by decrease vs
retention measures with real-time risk considering various Benchmark
and these “dive and signals to determine data inputs and Employee sensing
catches” are time if proactive focusing on highest participation and
consuming and measures are priority populations YoY improvement.
generally ineffective needed.

If acting, utilize a
library of content to
generate a targeted
approach

Strategic Intent — Hire, Progress and the best talent of the world



End-to-End Predictive Capability | Model Architecture

= [he Al Life Cycle & My Formula

\| 1. Data input ©
ML Model Development 2. Feature Engineering @

3. Turnover Prediction Process

End-to- End
Predictive Turnover
Capability Architecture
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By: Jonathan S. Androvetto
April 2023, Rev 3

Track & Sustain Capability

{ 7. Conceptual Framework for Proactive Retention ©

8. Monitoring ML Solution lo

*Model architecture is based on my own experience as a consultant



Turnover Prediction Methodology

Industry Methodology Performance Indicators Model Improvement Methodology

CRISP-DM
Cross-Industry
Standard Process
for Data Mining

Modelling phase

Feature
B Engineering B

Feature
Selection

Hypothesis Generation

Algorithm Multiple

Tuning algorithms

Model Performance

The CRoss Industry Standard Process for 80% F1 Score Learning Models such as the Turnover
Data Mining (CRISP-DM) is a methodology predictor model are not 100% accurate.
F1 score is a measure of a model's accuracy that -
thgt serves as the standard for a data combines two metrics. Recall and Precision. However, a methodolpgy was designed to
science process *Recall: ~69% (the percentage of employees who leave support continuous improvement of the
that are correctly identified as a turnover risk by the model
CRoss Industry Standard Process for Data Mining model. This means the model predicted 69% of actual

CRISP-DM Guide

turnover.)

*Precision: ~90% (the ratio of people identified as a
turnover risk by the model who end up leaving vs. those
who are identified as a turnover risk but do not leave. This
means that 90% of people predicted to

leave actually turned over)


https://www.the-modeling-agency.com/crisp-dm.pdf

How the prediction model works | Hypothetical example

To answer these questions, the model runs 17000s of
decision trees with 100s of demographic variables
against data sets of terminated employees...

A Sample Decision Tree & Gradient* Tree-based model
(e.g., LightGBM, CatBoost, Xgboos)

Non- US® US el S

/ [ L
A B XXX

@ 30% left 10% left @

In this example, US B EEs have the highest chance
of leaving.

All Active US B EEs will be flagged as “at risk”
The rest of EEs will be flagged as “not at risk”

~, -
~. -
__________

Who is at risk
of leaving?

To be thorough, the model runs 1000s of decision
trees of terminated EEs with 100s of demographic
variables (e.g., seniority, team diversity, org changes,
turnover, etc.) in different combinations. It keeps
flagging as “at risk” all active EEs that have the same
demographics as the terms, even if repeated

..Ultimately, the model produces a final list of Active EE most
frequently flagged as “at risk” and the demographic factors
associated with them

Team Turnover
Team Size
Time in position
Length of Service
Team Age Dist.




INnterpretation of signals | Symbolic Visualization

Time in Position Last 12 I\/Ionth Recognition Age Difference
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The model produces a series of signals based on demographic attributes identifying active employees that fit characteristics of the training data (employees who have
left) and classified as High Risk. The employee identified as High Risk will have several different signals assigned to them (it could even be 5 or more). It is the
combination of all the signals that determine the risk. It is not clear if one is more important than another to an individual (e.g., they are not weighted per se). For
example, employees on the same team could have very different factors and/or combination of factors. Some factors may appear to be more actionable than others,
however they cannot necessarily prescribe what actions to take on their own. The factors should be analyzed with other Turnover data points (i.e., Undesired Turnover
trends, External Market Threats, Employee Survey, Ground Intelligence, reg. TO, compensation, etc.) and linked with BHR Programs for actionability.
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The purpose of this Bl Solutionis to provide insight to the profiles of employees that are at risk of leaving
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Business Case | Conceptual Example

Methodology: Design Thinking

Talent Retention

HR Predictive Analytics

Design Thinking Framework Actions
DESIGN THINKING

flexible and fluid.
L/ Understand {
YV V¥ casomer v

External Signals + Working Group:
Exit Interviews

ect and terat

Turnnover Prediction Model

Turnnover Exploratory
Data Analysis

Talent Landscape — Turnover Deep Dive

Action Plan
Employee Sensing

Bolder and Faster Execution

Employees at Risk: Manager Assessment

++*Signs of engagement can be easily determined

Actively
Disengaged

Engaged

Not Engaged

Enjoys day-to-day * Lack of participation Burned out

responsibilities i L
* Silence Complaining

Collaborative o L
*  Lack of curiosity No Initiative

Communicates

effectively *  Blaming others No Questions

. Poor communication Distracted

Supports and
encourages others * Complacency Lack of Enthusiasm

Pursues
opportunities for
growth

Why are we doing thsw

-~ e e IPwriarsg 10 Leave rdes

Managers: Predictive Model Intro

Reguest control
‘“'l o F-
= - m

Based on Predictive Model Tool results, HR encourages Managers to have these
proactive conversations with identified team members to sense where employees’

mind is and company engagement condition m“i'!
a

Our main purpose is to: p »
purp TRACT B /
7

v

/
Help foster a motivated and engaged workforce m['[/

To learn about your employee’s goals and values in order to create a better
work environment for them.

Identify hotspots in your organization.

To understand what is motivating your employees to stay and what can
potentially drive them to leave.

Employees at Risk: Retention Plan

Retention Risk
TIG {years) Compa Ratio Assessment Retention/Engagement plans
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P e A R
Lot e tteie] Bl e o et | el Bl oo | e el Bt it ] ll s st e et | b2 - it B 12 e B i oo it it 2 Bl
wont 't b b b abrai
crpdi ] b e e e e e e B b b e e b e s et S e i F e e ek
e P . T et i o e
Fire-SiValidVerit Engineer ! e o i b B i | s g 0 it o ok B oo o el e i W o e e et i et ey e Y b o el e B ki e ber bt
ol i o b s Pt el i N e et b b b Sndied v bl e e et ) o o el it el i ) v e e el i el oo il i b | B b
e ekl Parbrs e e bl e e et i TR e e Sy e o b e e | e e e b e el B e e el et Ee b [ Fea meboren o B
-p 5 fey. ol e
Mk i prcemosige ey b bk, oy plie i bn i b P Bt ol groe g phogs 1 b o poms el gl by phillp
Pre-Si Verif 19 T Ear pray ora e Wil b price S oo, Coree st 1 s Branosanll ke it w b i recuareed i b - e T i Sie maom Blocker vk, S mons ook e e
) ) et b S
Lo I A TR T
. Hee, s v s e i o gt rot skl paipre e B0 s e
PANISPN 105 3% S e s s et i e it e o'y B i B B T i
Siaftw are Integration Engineer 55 1042
‘e vl g o e, Ha o e piaed o g Bl sk porsiar
| o Fayrep thaflrgng s s poporsra o bedie Semad, Sampregan reer hemp, peing Sice Berdle comporsnd 0 b w-pdos 4 ree ey F oogp e
IP Logic: Design Engineer 0.8 31 F i T I a—— g b e et s 1 o
Pl 0 g 2 eV W SRS T
S Application Engineer 13 107
"\.-'l.-'l-lj"-.r'l:u.p.'rllﬁwu'u'nﬁ_-'r'.-
S Application Engineer 0.a 31
[y el e pom
IP Logic Design Engineer 0.8 1054 i iy ey i e e vy mag ek ] e iy e e | ey e S ol e v er e erarars | e g g o e ol e e g g g o e ety paeaed b
o ray ey b o o
Pre-5iValidVerif Engineer 17 36
Ly iz Fldus P ool g et Bty CH v i e
Pre-5iValidVerif Engineer 33 105 o
o s’ o P [ o i ey b fovs s e o o il
Siaftw are Application Development Engineer 42 1052 a - )
i Raryree e b o L oo kb B iy e iy 21 Bl =y m vy - mpchy oo b by ot
Ll s el e mm Bconch
Cloud Application Development Engineer 16 93 o Pl B b e e O e P ik
Lot P oz v mim et 2ol oo, th He e el e i Eiee o e e g e

11



Business Case | Conceptual Example

Methodology: Design Thinking

Talent Retention
HR Predictive Analytics

Design Thinking Framework

~ DESIGN THINKIN

flexible and fluid.
" =)

erate

Turnnover Prediction Model

- Get More Insights
/ \ & p
l / Understand 7 [Re) Define B Propo-
¥ Customer ¥ “probiem \_VF  Solut

= '

Turnnover Exploratory
Data Analysis

PROTOTYPE

Working Group:

External Signals +
Exit Interviews

Talent Landscape — Turnover Deep Dive

Action Plan
Employee Sensing

Bolder and Faster Execution

Actions

» Execute & Measure

Exploratory Data Analysis

Exploratory Data Analysis [EDA]

All

site __________Mllcade

All All

Al v All

Al v Al

Principal Components Analysis [PCA]

Apphications in the Social

Principal component analysis (PCA) is 2 1achnigue used 1o fing underlying correlations that exist in 2 {potentizlly very large) set of variablas, Reference. Dunteman, G.H. Principal Components Analysis. Quantitative
Scrences. Sage Pubn Inc. 1989
x r —— -
PCA Variables Factor 1 PCA: Country vs Primary Factor £
Variables - PCA PCA - Biplot
'
)
3 Ethnicity Team Distribution
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'
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)
- Overtime Team Size
N O Team Distribution
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| -
Z sishent £ poan
Sl L L | . 4 EQ Fear OEURIRN _ 200 (=5 : !
E ‘ ¥ ;
a 199 a '
'
. '
'
~ '
e T Ny ’
. " iy ; Time with Intel
'
)
'
L)
'
L]
1.0~ ! ®
| | -
10 a0 08 1o 0.0 5 50 78
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Prediction Model Results vs Retention Programs

Brainstorming: How the turnover prediction model outcome could be link it to existing

By ensuring a robust career

development program By defining critical talent

Standard

+— Standard Process

retention programs?

Critical Talent Definition

Single Repository of

documentation and
resources for —_— Response Protocol for
Managers Critical Talent at Risk

Systematic Turnover
> Prediction

By: Jonathan 5. Androvetto Jan 2022
People Analytics

Exit Interview for +— BxitSurvey Inputs

target populations

By linking exit Interview insights
with predictive turnover

Implementation

t

Periodic analysis of
employees at Risk vs.
direct communication

with Managers

Systematic Implementation

Conceptual Model

Critical Talent Career

Development

Turnover Predictive Capability + Exit Interviews
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Key [akeaways

Data Protection Impact Assessment

Required Expertise in a ML Project Prioritize delivering a working solution
over a perfect one

perfection can be a time-consuming

A verity of skills are required — Assemble a team Don't aim for perfection on the first try

with all required expertise

Computer Science/IT  Math and Statistics Domains/ Business
Knowledge

Start Small and lterate — Remember that ML is just a small part of the end-to-end Solution
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